If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+96x-192=0
a = 7; b = 96; c = -192;
Δ = b2-4ac
Δ = 962-4·7·(-192)
Δ = 14592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14592}=\sqrt{256*57}=\sqrt{256}*\sqrt{57}=16\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-16\sqrt{57}}{2*7}=\frac{-96-16\sqrt{57}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+16\sqrt{57}}{2*7}=\frac{-96+16\sqrt{57}}{14} $
| -9=n/2-7 | | (5+6i)=(4i+4) | | (x+6)^((1)/(2))=x | | 8.3x-1.6=15 | | -4-2x=-36 | | 4.6x+4.6=9.2 | | 8.5x-20=6.5x-4 | | q-68/9=2 | | 36=h/9+31 | | 3=y/5-1 | | 150x+15=400 | | 760+-300h=10 | | s/4+10=13 | | -x+51=2x+24 | | x-(x*0.04)=96 | | 9x-10=7x-34 | | 1/2n=-48 | | -6(-2x+4)=-36 | | 8n-6n=-12 | | (2+3i)=(1+2i) | | 0=15+10x4 | | 27+3x=200 | | -13x-18=-135 | | 11x=6x+45 | | 6.9x+100=47.61+10x | | 0.5(t)=4.9t^2+80t+0.5 | | (y-3)^=4y-12 | | H(t)=-4.9^2+80t+0.5 | | 0.5+b=0.4 | | x^2+2+x+2+x+4=360 | | 3x(2-x)+8=2+x | | 2x(x+2)=x |